Convergence Rate of the Fuzzy Generalized Nearest Neighbor Rule
نویسنده
چکیده
tizzy k nearest neighbor rule (k-NNR) has been applied in a variety of substantive areas. Yang and Chen [l] described a fuzzy generalized k-NN algorithm which is a unified approach to a variety of fuzzy k-NNR’s. They created the strong consistency of posterior risk of the fuzzy generalized NNR. In this paper, we give their convergence rate. That is, the convergence rate of posterior risk of the fuzzy generalized NNR is exponentially fast. Keywords--Fuzzy k nearest neighbor rule, Bayes risk, Posterior risk, Strong consistency, Convervence rate, Exponentially fast.
منابع مشابه
Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملA Survey of Fuzzy Clustering
This paper is a survey of fuzzy set theory applied in cluster analysis. These fuzzy clustering algorithms have been widely studied and applied in a variety of substantive areas. They also become the major techniques in cluster analysis. In this paper, we give a survey of fuzzy clustering in three categories. The first category is the fuzzy clustering based on fuzzy relation. The second one is t...
متن کاملNearest-Neighbor Classification Rule
In this slecture, basic principles of implementing nearest neighbor rule will be covered. The error related to the nearest neighbor rule will be discussed in detail including convergence, error rate, and error bound. Since the nearest neighbor rule relies on metric function between patterns, the properties of metrics will be studied in detail. Example of different metrics will be introduced wit...
متن کاملFUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کامل